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Purpose. The main objective of this work is to compare the standard bioequivalence tests based on
individual estimates of the area under the curve and the maximal concentration obtained by non-
compartmental analysis (NCA) to those based on individual empirical Bayes estimates (EBE) obtained
by nonlinear mixed effects models.
Methods. We evaluate by simulation the precision of sample means estimates and the type I error of
bioequivalence tests for both approaches. Crossover trials are simulated under H0 using different
numbers of subjects (N) and of samples per subject (n). We simulate concentration-time profiles with
different variability settings for the between-subject and within-subject variabilities and for the variance
of the residual error.
Results. Bioequivalence tests based on NCA show satisfactory properties with low and high variabilities,
except when the residual error is high, which leads to a very poor type I error, or when n is small, which
leads to biased estimates. Tests based on EBE lead to an increase of the type I error, when the shrinkage
is above 20%, which occurs notably when NCA fails.
Conclusions. For small n or data with high residual error, tests based on a global data analysis should be
considered instead of those based on individual estimates.

KEY WORDS: bioequivalence tests; non-compartmental analysis; nonlinear mixed effects model;
pharmacokinetics; SAEM algorithm.

INTRODUCTION

Pharmacokinetic (PK) bioequivalence studies are per-
formed to compare different drug formulations. The most
commonly used design for bioequivalence trials is the two-
period two-sequence crossover design. This design is recom-
mended by the Food and Drug Administration (FDA) (1)
and the European Medicines Evaluation Agency (EMEA)
(2). FDA and EMEA recommend to test bioequivalence
from the log ratio of the geometric means of two parameters:
the area under the curve (AUC) and the maximal concen-
tration (Cmax). These endpoints are usually estimated by non-
compartmental analysis (NCA) using the trapezoidal rule to
evaluate AUC (3). NCA requires few hypotheses but a large
number of samples per subject (usually between 10 and 20).

PK data can also be analyzed using nonlinear mixed
effects models (NLMEM). This method is more complex than
NCA but has several advantages: it takes benefit of the
knowledge accumulated on the drug and can characterize the
PK with few samples per subject. This allows for analyses in

patients, the target population, and in whom pharmacokinetics
can be different from healthy subjects. Non-compartmental
AUC is computed by trapezoidal rule, which ignores assay
error. NCA does not take into account nonlinear pharmaco-
kinetics, which can bias the bioavailability estimation (4) and
may amplify small bioavailability differences between drug
products (5). The European guideline on similar biological
medicinal products, which frequently exhibit nonlinear phar-
macokinetics, recommends to estimate the elimination char-
acteristics, such as clearance, in the comparative PK studies
(6). It is known that in these conditions, clearance is not
accurately estimated by NCA. Models can also lead to better
understanding of the biological system than a fully empirical
approach and therefore help interpret ambiguous results.

However, the use of NLMEM is still rare in early phases
of drug development or to analyze crossover studies. There are
only seven published studies which use NLMEM to analyze
bioequivalence trials (7–13), and except in Zhou et al. (12), all
analyze a dataset with many samples per subject. Five papers
(7–10,13) compare tests based on individual NCA estimates to
tests based on NLMEM, and all conclude that the results are
similar. Yet, they use different statistical approaches to test
bioequivalence with NLMEM. Furthermore, none perform
bioequivalence tests on individual estimates of AUC and Cmax

obtained from NLMEM. Pentikis et al. (9) propose the
estimation of AUC and Cmax by standard nonlinear regression
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as an alternative to the NCA, and Zhou et al. (12) perform
bioequivalence tests on the individual empirical Bayes esti-
mates (EBE) of the volume of distribution and the steady-state
through concentration. Otherwise, bioequivalence tests are
performed on treatment effect parameters (7–11,13). All
authors agree that simulation studies are needed to evaluate
bioequivalence tests based on NLMEM and to compare them
to tests based on individual NCA estimates.

In this work, we compare the standard analysis of bioequi-
valence crossover trials based on NCA to the same usual analysis
based on individual EBE obtained by NLMEM. We study the
influence of the design for each approach. There is already one
published simulation study of Panhard and Mentré which
evaluates bioequivalence tests based on EBE estimated through
NLMEM (14). Our present study relies on the work of Panhard
and Mentré as a starting point and adds several new features.

The major distinctness concerns the studied tests on the
individual estimates (EBE or NCA). Panhard and Mentré
perform the Student paired test and the Wilcoxon paired
signed rank test, whereas we use a linear mixed effects model
(LMEM). As specified in the regulatory guidelines (1,2), the
bioequivalence analysis should take into account sources of
variation that can be reasonably assumed to have an effect on
the endpoints AUC and Cmax. Therefore, LMEM including
treatment, period, sequence and subject effects are usually
used to analyze the log-transformed data (15).

Panhard and Mentré limit their comparison to bioequiva-
lence tests onAUC and do not evaluate tests based onCmax. In
the present study, both endpoints are analyzed; indeed, we
expect some issues, for bioequivalence test performed on Cmax

as the estimation ofCmax by NCA is sensitive to the design, and
the computation of Cmax from EBE is more complex than for
AUC. To simulate PK profiles and then to estimate individual
parameters by NLMEM, Panhard and Mentré use a pharma-
cokinetic model parametrized using AUC as one of the PK
parameters, whereas we choose a more common parameter-
ization, replacing AUC by the clearance of the drug.

For the estimation of NLMEM parameters, Panhard and
Mentré use an algorithm based on a first-order linearization
with respect to the random effects, the first-order conditional
estimates (FOCE) algorithm (16) implemented in the R
function nlme (17). The FOCE algorithm is the more widely
used algorithm and corresponds to the industry standard for
model-based PK analyses as it is implemented in NONMEM.
Yet, this algorithm presents some convergence issues which could
be avoided with the use of a stochastic algorithm using the exact
maximum likelihood, such as the stochastic approximation expect-
ation maximisation (SAEM) algorithm (18–20). The SAEM
algorithm is implemented in the free software MONOLIX (21)
(first version February 2005) and is applied to several population
PK analyses (22–24).

The main objective of this work is to compare standard
bioequivalence tests based on individual estimates of AUC
and Cmax obtained by NCA or by NLMEM. The comparison
is based on the precision of the sample means of log(AUC)
and log(Cmax) and on the type I error of bioequivalence tests
for both estimation methods. In “Methods”, we describe the
model, the simulation study, both estimation methods (NCA
and NLMEM), the evaluation of precision of sample means,
how bioequivalence tests are performed and how shrinkage
on the tested parameters is estimated. The main results of the

simulation are exposed in “Results.” Finally, the study results
and perspectives are discussed.

METHODS

Simulation Study

Simulation Model

We analyze two-period two-sequence crossover PK trials
where subjects are randomly allocated to one of two treat-
ment sequences. In the first sequence (Ref–Test), subjects
receive the reference treatment (Ref) and the test treatment
(Test) in period one and two, respectively. In the second
sequence (Test−Ref), subjects receive treatments in the
reverse order (Test then Ref). Designs are balanced, i.e. each
sequence has the same number of subjects N/2.

In the following, we denote yijk the concentration for
individual i (i=1,··· , N) at sampling time j (j=1,··· , nik ) for
period k (k=1, 2). We also denote f the nonlinear pharma-
cokinetic function which links concentrations to sampling
times. The nonlinear mixed effects model can be written as
follows:

where θik=(θikl; l=1,··· , p)′ is the p-vector of the PK parameters
of subject i for period k. єijk is the residual error assumed to be
normally distributed with zero mean and variance �2

ijk, with the
following:

�2
ijk ¼ aþ b f tijk; �ik

� �� �2 ð2Þ

This is a combined error model with two parameters: a
for the additive and b for the proportional part. We assume a
multivariate log-normal distribution for the individual param-
eters θik. In absence of covariates, the lth individual parameter
can be decomposed as follows:

�ikl ¼ �l e
�ilþkikl ð3Þ

with μ=(μl; l=1,··· , p)′ the p-vector of fixed effects, �i=(�il; l=
1,··· , p)′ the vector of random effects of subject i and κik=(κikl;
l=1,··· , p)′ the vector of random effects of subject i at period k. �i
represents the variability between individuals and is named
between-subject variability (BSV). κik represents the variability
between two periods of treatment for the same individual and is
called within-subject variability (WSV). �i and κik are assumed to
be normally distributed with zero mean and with covariance
matrices of size p×p denotedΩ and Γ, respectively. In this study,
we assume thatΩ and Γ are diagonal. �i, κik and єijk are assumed
to be independent.

We introduce three categorical covariates into the
statistical model: the treatment Tik, the period Pk and the
sequence Si. The reference classes for each covariate are
defined as follows: Tik is fixed to zero for the treatment Ref
and is equal to 1 for the treatment Test; Pk is fixed to zero for
the first period and is equal to 1 for the second one; Si is fixed
to zero for the first sequence Ref−Test and is equal to 1 for
the second one Test−Ref. βT=(βT,l; l=1,··· , p)′ βP=(βP,l;
l=1,··· , p)′ and βS=(βS,l; l=1,··· , p)′ correspond to vectors
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of the treatment, period and sequence effect. With these three
covariates, µl of Eq. 3 is replaced by µikl defined as follows:

�ikl ¼ ll e
bT;lTikþbP;lPkþbS;lSi ð4Þ

with 1=(1l; l=1,··· , p)′ the p-vector of the fixed effects for the
reference classes.

Theophylline Pharmacokinetics

We use the concentration data of the anti-asthmatic drug
theophylline to define the population PK model for the
simulation study. These data are classical ones in population
pharmacokinetics (17) and are used in previous simulation
studies done by Panhard et al. (14,25). The theophylline data
include twelve subjects receiving a single oral dose of
theophylline depending on their body weight (from 3 to 6
mg). For each patient, ten blood samples were taken at 0.25,
0.5, 1, 2, 3.5, 5, 7, 9, 12 and 24h after administration and
serum concentrations were measured. A one-compartment
model with first-order absorption and first-order elimination
adequally describes the data and can be written as follows:

f t; �ð Þ ¼ FDka
CL� Vka

e�ka t � e�CL=V t
� �

ð5Þ

where D is the dose, F the bioavailability, ka the absorption
rate constant, CL the clearance of the drug and V the volume
of distribution. As only data after oral administration were
obtained, the bioavailability could not be estimated, and,
consequently, the vector θ of PK parameters is equal to (ka,
CL/F, V/F).

Simulation Features

In this simulation study, we use rather similar settings as
those of the simulation studies performed by Panhard et al.
(14,25). However, we simulate two-period, two-sequence
crossover pharmacokinetic trials, whereas they simulate two-
period, one-sequence crossover trials. For each trial, N/2
subjects are allocated to the sequence Ref−Test, and N/2
subjects are allocated to the sequence Test−Ref. We fix the
dose for all subjects to 4 mg, which corresponds to the
rounded median dose of the theophylline study. The vector
of population parameters 1 is composed of (lka¼1:48 h�1 ,
λCL/F=40.36 mL/h, λV/F=0.48 L) for the reference treatment.
In order to mimic a change in bioavailability, we add a
treatment effect βT=(0, βT,CL/F, βT,V/F)′ on log(λ), i.e. we
multiply λCL/F by ebT;CL=F and λV/F by ebT;V=F for the test
treatment. The modification of bioavailability also affects AUC
andCmax. Indeed,AUC=FD/CL andCmax is defined as follows:

Cmax ¼ f tmax; �ð Þ ¼ FD
V

e�CL=V tmax

with tmax ¼ log kað Þ � log CL=Vð Þ
ka � CL=V

ð6Þ

We do not simulate a period effect or a sequence effect.
We simulate with two levels of variability for the between-
subject and within-subject variability. In the following, BSV
and WSV are given as standard deviations of the log-

transformed parameters multiplied by 100 and expressed in
percent. The standard deviation on the log scale corresponds
approximately to the coefficient of variation on the ordinary
scale. For the low level, we fix BSV to 20% for ka and CL/F
and to 10% for V/F; WSV is fixed to half BSV for the three
parameters. For the high level, we fix BSV to 50% and WSV
to 15% for the three parameters. We also simulate with two
levels of variability for the residual error: a=0.1 mg/L, b=
10% for the low level, and a=1 mg/L, b=25% for the high
level. The high level of residual error is only used with the
high level of BSV and WSV. We call Sll the variability setting
with low variability level for BSV and WSV and low
variability level for the residual error. Shl is the variability
setting corresponding to high variability level for BSV and
WSV and low variability level for the residual error. Finally,
Shh is the variability setting with high variability level for BSV
and WSVand high variability level for the residual error. The
three variability settings are summarized in Table I.

Simulation Process

For each subject i=1,··· , N of each simulated trialm=1,···,
M, we simulate a vector of random effects �i in N (0, Ω) and
two vectors of random effects κik in N (0, Γ), one for each
period k=1, 2. To get the logarithm of each individual
parameter log(θikl), we add the logarithm of the mean
parameter log(1l), the treatment effect βT,l if needed (depend-
ing on the treatment group and the PK parameter considered),
and both random effects �il and κikl. The concentrations
f(tijk, θik) predicted by the PK model at time tijk (j=1,···, nik)
are then computed using the individual parameters. In these
simulations, the sampling times for all subjects and both
periods are similar. Therefore, j = 1,···, n, where n is a fixed
number of sampling times for each simulated design. Finally, we
add a residual error, generated from a normal distribution, N (0,
(a+b f(tijk, θik))

2), to each predicted concentration to obtain the
simulated concentrations, yijk. We do not incorporate in the
simulation a limit of quantification (LOQ) because NCA cannot
handle such data, contrary to the SAEM algorithm, and we do
not want to favour the later. In the rare cases where the simulated
concentration is below zero, we fix it to the value 0.1mg/L.

We expect more of these fixed concentrations when
variability increases, but their proportion could also differ
from one design to another if the sampling times differ.
Consequently, for each simulated design and each variability

Table I. Summary of the Three Variability Settings Used in the
Simulation Study

Variability Sl,l Sh,l Sh,h

BSV 20% for ka and CL/F 50% 50%
10% for V/F

WSV 10% for ka and CL/F 15% 15%
5% for V/F

Residual error a=0.1mg/L a=0.1mg/L a=1mg/L
b=10% b=10% b=25%

The Between-Subject (BSV) and Within-Subject (WSV) Variability
are Given as Standard Deviations of the log-parameters Multiplied by
100 and Expressed in Percent
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setting, we compute the proportion of the concentrations
fixed to 0.1mg/L and study the corresponding sampling times.

Simulation Designs

We simulate trials with four different designs, which are
also used by Panhard et al. (14,25). We simulate with the
original design with N=12 subjects and n=10 samples per
subject and per period, taken at the times of the initial study
(0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12 and 24h after dosing). We also
simulate with an intermediate design with N=24 subjects and
n=5 samples taken at 0.25, 1.5, 3.35, 12 and 24h after dosing,
a sparse design with N=40 subjects and n=3 samples taken at
0.25, 3.35 and 24h after dosing, and a rich design N=40
subjects and n=10 samples taken at the times of the initial
study. For each design, we simulate using the variability
settings Sl,l and Sh,l. We simulate using Sh,h only for the
intermediate design. For each design and each variability
setting, we simulate 1000 trials under two different hypoth-
eses: H0;80% where βT=(0, log(0.8), log(0.8))′ and H0;125%

where βT = (0, log(1.25), log(1.25))′. For each simulated trial,
each simulated design and each variability setting, the
simulated concentrations for the reference treatment are
equal in both simulated hypotheses. In the following, we call
simulation setting the association of one design with one

variability setting and one hypothesis (H0;80% or H0;125%).
Considering this, there are 18 different simulation settings (8
for Sl,l and Sh,l, and 2 for Sh,h). All simulations are performed
using the statistical software R 2.7.1. Fig. 1 displays the
individual data of one trial simulated under H0;80% and
H0;125% with the intermediate design and three variability
settings (Sl,l, Sh,l and Sh,h).

Estimation of Individual Parameters

Notations

We perform bioequivalence tests on AUC and Cmax. To
estimate the individual parameters using NCA or NLMEM,
we do not consider periods or sequences. Only the treatment
group (Ref or Test) is taken into account. For each simulated
trial m=1,···, 1000 of one simulation setting, there are 2N
individual AUC and 2N individual Cmax, one for each subject
i=1,···, N and each treatment group.

In the following, for one simulated trial, we call AUC Refð Þ
i

the true value of the individual AUC of subject i for the
reference treatment and AUC Testð Þ

i the true value of the
individual AUC of subject i for the test treatment; we also
define dAUC Refð Þ

i the estimated value of individual AUC of
subject i for the treatment Ref obtained from NCA or
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Fig. 1. Concentrations (mg/L) simulated for the intermediate design (N=24, n=5) for the reference treatment (left) and for the test treatment
under H0;80% (middle) and H0;125% (right) using the variability settings Sl,l (top), Sh,l (middle) and Sh,h (bottom).
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NLMEM and dAUC Testð Þ
i the corresponding AUC for the

treatment Test.
The same notations are applied to Cmax. C Refð Þ

max i and
C Testð Þ

max i are the true value of the individual Cmax of subject i
for the treatment Ref and Test, respectively. dCmax i

Refð Þ anddCmax i
Testð Þ are the corresponding estimated value of individ-

ual Cmax obtained from NCA or NLMEM.
In some cases, we may refer to these different individual

parameters without specifying the treatment group. For each
simulated trial, AUC Refð Þ

i , AUC Testð Þ
i , C Refð Þ

max i , C Testð Þ
max i are

computed from the corresponding individual parameters
ka, CL/F and V/F simulated as described in “Simulation
Process.”

Estimation Based on Non-compartmental Analysis

First, we estimate AUC and Cmax by non-compartmental
analysis (3) using an R function named mnca which we
developed. For each simulated trial, this function provides the
estimation of different NCA parameters for each subject and each
treatment group. Different options have to be specified in mnca.
In this study, we use the linear trapezoidal rule to compute the
AUC0−last between the time of dose (equal to 0) and the last
sampling time. To obtain the total AUC (between the time of dose
and infinity), we compute the terminal slope equal to CL/V using
the logarithm of the last concentrations to perform a log-linear

regression. To do so, we use a fixed number of concentrations
which depends on the number of samples per subject in the design.

To avoid biased estimation of the terminal slope, the first
point used for its computation should be on the descending
side of the concentration curve and not too close to Cmax.
Using the mean value of PK parameters, tmax, the sampling
time corresponding to Cmax, is about 2.06h for both treatment
groups (contrary to Cmax, tmax is not affected by the change of
bioavailability). Consequently, for the original and rich
designs where n=10, we use the last four concentrations
which correspond to sampling times 7, 9, 12 and 24h. NCA is
normally performed on PK profiles containing ten sampling
times per subject or more. For intermediate and sparse
designs where n=5 and n=3, respectively, the total AUC is
estimated by NCA for completeness. For these two designs,
we use the last two concentrations which correspond to
sampling times 12 and 24h for the intermediate design, and to
3.35 and 24h for the sparse design.

Fig. 2 displays the individual concentration curves of one
simulated trial for the original, intermediate and sparse
designs and the two variability settings, Sl,l and Sh,l. The
bottom left graphic of Fig. 1 presents a similar graphic for the
intermediate design and Sh,h, completing our illustration. For
original and intermediate designs, the number of concen-
trations used to compute the terminal slope seems reason-
able. The same observation can be done for the rich design
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Fig. 2. Concentrations (mg/L) simulated for the original (N=12, n=10, left), intermediate (N=24, n=5, middle) and sparse (N=40, n=3, right)
designs for the reference treatment using the variability settings Sl,l (top) and Sh,l (bottom).
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because the sampling times are similar to those of the original
design, only the number of subjects differs. For sparse design,
the number of concentration used to compute the terminal
slope is chosen by default, first point being close to Cmax.

Other assumptions aremade to compute the terminal slope,
to handle particular PK profiles, especially for the intermediate
and sparse designs where only two points are used for the
estimation. If the last two concentrations increase instead of
decreasing or if they are similar up to the sixth digit, we consider
the terminal slope to be missing, i.e. there is no estimation of the
total AUC for the subject and treatment concerned. The
proportion of missing dAUCi should increase with variability
and could differ from one design to another due to different
sampling times. Consequently, for each design and each
variability setting, we compute the proportion of missing dAUCi .

For all designs, Cmax is estimated as the maximal
concentration observed. Contrary to AUC, there is no missing
Cmax.

Estimation Based on Nonlinear Mixed Effects Model

We also estimate AUC and Cmax from the individual
empirical Bayes estimates of the PK parameters after
population analyses. In this study, we use the SAEM
algorithm implemented in MONOLIX 2.4 to estimate the
NLMEM parameters (population and individual parameters).
For each simulated trial, we analyze separately the concen-
trations of each treatment group using NLMEM without
taking into account periods and sequences. As each subject
receives both treatments, data of each treatment group
contain observations from all subjects. In the following, we
describe the statistical model used to fit the data of the reference
treatment. We consider y Refð Þ

ij the concentration for individual i
(i=1,···, N) at time tij (j=1,···, n) and for the treatment Ref.
Depending on the sequence of the subject, y Refð Þ

ij corresponds to
concentration of the first or second period. The statistical model
used has no covariate because no period or sequence effect are
incorporated. Furthermore, since periods are not considered,
WSV cannot be separated from BSV. Consequently, the lth

individual parameter is defined as follows:

�
Refð Þ
il ¼ �

Refð Þ
l e�

Refð Þ
il ð7Þ

Ω(Ref) is the covariance matrix of the vector of random effects
�

Refð Þ
i . A similar statistical model is applied to fit the data of the
treatment Test.

Of note, given the BSV and WSV, the overall variability
is equal for both treatment groups, i.e. Ω(Ref)=Ω(Test).
However, for each simulated trial, their estimates, bΩ Refð Þ

and bΩ Testð Þ , are different. The overall simulated variability is
22.4% for ka and CL/F and 11.2% for V/F under Sl,l, and
52.2% for the three PK parameters under Sh,l and Sh,h.

After having estimated the population parameters for the
data of one treatment group of one simulated trial, we estimate
the conditional modes of the corresponding individual param-
eters which are defined as the individual empirical Bayes
estimates. These EBE provide the individual estimates of PK
parameters (ka, CL/F and V/F). We then derive individualdAUC Refð Þ

i and dCmax i
Refð Þ or dAUC Testð Þ

i and dCmax i
Testð Þ depend-

ing on the treatment group considered. Contrary to NCA,

there is no missing dAUCi obtained by NLMEM using the
SAEM algorithm.

Evaluation of Estimates of Sample Means

In this study, we compute individual dAUCi and dCmaxi for
1000 replicates of different designs, different variabilities and
different treatment groups using two types of estimation. To
analyze and compare the accuracy and precision of the
estimates of the sample means of log(AUC) and log(Cmax)
using NCA or EBE, we compute estimation error for each
treatment group (Ref or Test) of each simulated trial. To take
into account sampling variability, for each dataset we
compute the estimation error as the difference between the
sample mean of the estimates (NCA or EBE) and the sample
mean of the true simulated values. In the following, defi-
nitions are given for dAUC Refð Þ

i . The same definitions apply todAUC Refð Þ
i , dCmax i

Refð Þ, and dCmax i
Testð Þ. For each simulated trial,

the estimation error for the sample mean of log(AUC) for the
reference treatment is computed as follows:

ee Refð Þ
AUC ¼ 1

N*

XN*
i¼1

log dAUC Refð Þ
i

� �
� 1

N

XN
i¼1

log AUC Refð Þ
i

� �
ð8Þ

with dAUC Refð Þ
i the AUC estimated by NCA or derived from

EBE for subjects i=1,··· , N*, and AUC Refð Þ
i the true simulated

parameter for subjects i = 1,···, N. For the estimation of
individual parameters by NCA, there may be missing dAUCi so
that N*≤N.

For one simulation setting, we call ee Refð Þ
AUC;m the estimation

error for the sample mean of log(AUC) computed for
the reference treatment and the mth simulated trial
(m=1,···, 1000). We then define the bias and root mean
square error (RMSE) computed from ee Refð Þ

AUC;m over the 1000
replicates as follows:

bias Refð Þ
AUC ¼ 1

1000

X1000
m¼1

ee Refð Þ
AUC;m

rmse Refð Þ
AUC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000
m¼1

ee Refð Þ
AUC;m

� �2

vuut ð9Þ

As well as computing bias and RMSE, we compute the
95% confidence interval of bias Refð Þ

AUC using the standard error
of the mean and the 97.5% quantile of the Gaussian
distribution. If zero does not belong to the 95% confidence
interval of bias Refð Þ

AUC , we can conclude that bias is significantly
different from zero with a type I error of 5%.

Bioequivalence Test

Implementation of the Two One-Sided Tests

We perform the standard bioequivalence analysis recom-
mended by FDA and EMEA (1,2). The individual parame-
ters are log-transformed and analyzed using a linear mixed
effects model written as follows:
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where θikl represents the lth individual parameter (AUC if l=1
or Cmax if l=2) for subject i (i=1,···, N) at period k (k=1, 2). νl
is the mean value for the studied log-transformed metric. The
three covariates, Tik, Pk and Si, for treatment, period and
sequence are defined as before. It is assumed that the random
subject effect ξil (l=1, 2) and the residual error єikl(l=1, 2) are
independently normally distributed with zero mean.

For each simulation setting, the individual estimatesdAUCi and dCmax i obtained from NCA and NLMEM are
analyzed by the LMEM described above. To check the
properties of the TOST, we also analyze the true simulated
value AUCi and Cmax i. As specified before, for AUC
estimated by NCA, they may be missing dAUCi . In that case,
the LMEM is performed on less than 2N dAUCi .

After fitting the LMEM to individual metrics, a bio-
equivalence test is performed on the estimate of treatment
effect bbT;l . The null hypothesis of the bioequivalence test
recommended by the guidelines (1,2) and performed on
the lth individual parameter is H0: {βT,l≤ log(0.8) or
βT,l≥ log(1.25)}. H0 is rejected if the 90% confidence interval
(90% CI) of bbT;l lies within [log(0.8); log(1.25)]. These limits
of the bioequivalence test correspond to a ratio of the
geometric mean falling within 80%–125%. This approach
based on the 90% CI is equivalent to Schuirmann’s two one-
sided tests (TOST) procedure (26). H0 is composed of two
unilateral hypotheses: {βT,l≤ log(0.8)} and {βT,l≥ log(1.25)}.
Both are tested separately by a one-sided test with a type I
error of 5%. The p-value of the TOST is the maximum of
both p-values of the one-sided tests, and for each test the limit
is the 95% quantile of the Student distribution with df
degrees of freedom.

For balanced datasets, the N/2 subjects of each sequence
are considered as two independent samples from normal
populations with equal variances, and df=N−2 (15,27). For
unbalanced datasets, i.e. when there is one or more missingdAUCi in a dataset for NCA, the determination of the degrees
of freedom is more complex. Different approximations are
available as, for example, the containment method (28), the
Kenward-Roger adjustment (29) or the Satterthwaite’s pro-
cedure approximation (28,29). In this study, we use the R
function lme from the package nlme to perform the LMEM in
which the degrees of freedom are estimated using the containment
method (17). There, the degrees of freedom are calculated as df=
nobs−N–2 where nobs is the total number of individual parame-
ters. When there is no missing value, this approach coincides with
the degrees of freedom computed in balanced datasets (because
then nobs=2N).

Evaluation of the Type I Error

Bioequivalence tests are evaluated for dAUCi and dCmax i

estimated by NCA or NLMEM on trials simulated under the
composite null hypothesis H0. Bioequivalence tests are also
performed on the true simulated values AUCi and Cmax i. The
type I error of the TOST procedure is defined as the
supremum of the type I errors over the null space (30). It
corresponds to the supremum of the type I error of the two
one-sided tests. As suggested by Liu and Weng (31), the type
I error of the bioequivalence test can be evaluated for each
boundary of H0 space, i.e. log(0.8) and log(1.25). Conse-
quently, we simulate for each design of each variability setting

1000 trials under each unilateral hypothesis H0;80% and
H0;125% as specified before.

For each unilateral hypothesisH0;80% andH0;125%, the type
I error is estimated by the proportion of the simulated trials for
which the null hypothesis H0 is rejected. If the bioequivalence
tests were performed on the true parameters (AUCi andCmax i ),
the results of both type I errors should be identical because
H0;80% and H0;125% are symetric, but we are working with
estimates. As proposed by Panhard and Mentré (14), we define
the global type I error as the maximum value of both type I
errors estimated. Due to the 1000 replicates, the 95% prediction
interval (95% PI) for a type I error of 5% is [3.7%; 6.4%].

Shrinkage and Tests Based on Empirical Bayes Estimates

It is known in NLMEM that, with sparse individual
information, the individual estimates of random effects shrink
towards their mean value, which is zero (32). For the
reference treatment group of each simulated trial, the
shrinkage on the lth individual EBE (ka, CL/F or V/F) can
be defined as follows:

Sh Refð Þ
l ¼ 1�

var b� Refð Þ
il

� �
bw Refð Þ2
l

ð11Þ

where var b� Refð Þ
il

� �
is the empirical variance of the lth

individual estimated random effects and bw Refð Þ2
l is the

estimated variance of the corresponding random effects.
AUC and Cmax are secondary parameters of the

NLMEM because they are defined as functions of the PK
parameters, ka, CL/F and V/F. As the shrinkage on individual
EBE, the shrinkage on log(AUC) and log(Cmax) can also be
computed. Consequently, we can study the link between the
type I error of bioequivalence tests based on EBE and the
amount of shrinkage.

For log(AUC), Eq. 11 can be expressed as follows:

Sh Refð Þ
AUC ¼ 1�

var log dAUCðRef Þ
i

� �� �
bw2
AUC Refð Þ

ð12Þ

where var log dAUC Refð Þ
� �� �

is the empirical variance of the
individual estimates log dAUC Refð Þ

i

� �
and bw2

AUC Refð Þ is its
estimated variance in the model. As log(AUC)=log(D)− log
(CL/F), w2

AUC Refð Þ¼w2
CL=F Refð Þ and bw2

AUC Refð Þ is the estimated
value bw2

CL=F Refð Þ .
For one simulation setting, we call Sh Refð Þ

AUC;m the
shrinkage on log(AUC) computed for the reference treatment
and the mth simulated trial (m=1,···, 1000). To summarize the
1000 Sh Refð Þ

AUC;m of each simulation setting, we compute the
median shrinkage over these 1000 values.

Eq. 12 can be applied to log(Cmax); var log dCmax i
Refð Þ

� �� �
is computed from the individual estimates as for AUC. As the
definition of Cmax given in Eq. 6 is complex, the variance of
log(Cmax) for the reference treatment, w2

C Refð Þ
max

, cannot be

directly computed from w2
k Refð Þ
a

, w2
CL=F Refð Þ and w2

V=F Refð Þ. It must
be approximated, for instance, using the delta method (33).
The expression and details are given in Appendix. As for
AUC, the median shrinkage over the 1000 values of Sh Refð Þ

Cmax;m

is computed for each simulation setting.
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RESULTS

Simulated Data and Missing Values

As explained in “Simulation Process,” if the simulated
concentration is below zero, it is fixed to 0.1 mg/L. As
expected, the proportion of these fixed concentrations differs
from one variability setting to another and from one design to
another, except for the original and rich design where the
sampling times are similar. The maximal proportion is rather
small and is 0.03% for Sl,l, 1.6% for Sh,l and 8.5% for Sh,h. For
Sl,l, all fixed concentrations correspond to the last sampling
time, which is 24 h for all designs. For Sh,l, there are fixed
concentrations corresponding to different sampling times but
fixed concentrations at 24h are majoritary, with a minimal
proportion of 90%. For Sh,h, fixed concentrations correspond
mostly to 24 h (54%) and then mainly to 0.25 h (20%) and 12
h (19%).

Over all the simulations, some dAUCi estimated by
NCA are missing due to particular individual PK profiles
(see “Estimation Based on Non-compartmental Analysis”).
The proportion of missing dAUCi is similar in both
hypotheses and remains rare for the four designs of Sl,l
and Sh,l. For both variability settings, the maximal propor-
tion corresponds to the intermediate design (N=24, n=5)
with 0.02% and 3.3% for Sl,l and Sh,l, respectively. This
proportion is 25% for Sh,h. Among missing dAUCi of Sh,h,
12% are due to concentrations fixed to 0.1 mg/L, i.e. due to
two similar last concentrations. Other missing dAUCi are
due to two last concentrations increasing instead of decreas-
ing. As expected, there is no simulated trial where all dAUCi

for both treatment groups are missing. In other words, the
estimation error for the sample mean of log(AUC) or log
(Cmax) is computed on the 1000 simulated trials for each
simulation setting, and the type I errors of bioequivalence
test are estimated on 1000 replicates for AUC and Cmax for
both hypotheses H0;80% and H0;125%.

Evaluation of Estimates of Sample Means

Fig. 3 displays the bias (top) and RMSE (bottom) on
sample mean estimates for log(AUC) (left) and log(Cmax)
(right) estimated for the reference treatment. Results are
similar for both treatment groups (Ref and Test) and both
unilateral hypotheses (results not shown). The 95% con-
fidence interval of the bias is not shown in Fig. 3 because
this interval is tighter than the width of the displayed
symbol and all biases are significantly different from zero.
There is more bias and larger RMSE for NCA than for
EBE for all designs and all variability settings. Note that
biases and RMSE are computed on log scale so that, for
instance, a value of 0.038 corresponds approximatively to
an error of 3.8% on the ordinary scale for the geometric
mean. For NCA estimates, the bias and RMSE increase
when the number of samples per subject decreases and are
lower for Sl,l compared to Sh,l. For the intermediate design
(N=24, n=5), the bias on the sample mean of log(AUC) is
0.038, 0.094 and 0.15 for Sl,l, Sh,l and Sh,h, respectively;
RMSE is 0.044, 0.12 and 0.21, respectively.

For individual estimates based on EBE, the bias is
small (less than 0.02) for both parameters (log(AUC) and

log(Cmax)), all designs and all variability settings, whereas
RMSE increases when the number of samples per subject
decreases and is majoritary lower for Sl,l compared to Sh,l.
For instance, for the intermediate design, the bias on the
sample mean of log(AUC) is -0.0096, -0.016 and -0.010 for
Sl,l, Sh,l and Sh,h, respectively; RMSE is 0.019, 0.031 and
0.10, respectively.

Bioequivalence Test

Table II and Fig. 4 provide the results of the type I error
of bioequivalence tests performed on the treatment effect of
log(AUC) and log(Cmax). Table II contains the estimated type
I error for each unilateral hypothesis, each design of each
variability setting, for the true simulated values and both
types of estimates (NCA and EBE). Fig. 4 represents the
global type I error for log(AUC) (top) and log(Cmax)
(bottom) versus the design for each variability setting and
both types of estimates. The global type I error is defined as
the supremum of both estimated type I errors.

For the bioequivalence test performed on the true
simulated values, the type I error for all designs, all variability
settings and both null hypotheses lie within the 95% PI of the
nominal level showing the good performance of the TOST.
Mostly, for one type of estimates (NCA or EBE) and one
design of one variability setting, the type I errors of both
hypotheses are close. For log(AUC), the global type I error of
test based on NCA estimates lies within the 95% PI of the
nominal level for the four designs of Sl,l and Sh,l, and it is
much too conservative for Sh,h. For instance, for the
intermediate design, the global type I error is 4.3%, 5.2%
and 0.8% for Sl,l , Sh,l and Sh,h, respectively. For Cmax, test
based on NCA estimates has a correct global type I error for
the original and intermediate designs simulated with Sl,l and
Sh,l. The global type I error is above the 95% PI for the sparse
design (N=40, n=3) simulated with Sl,l and Sh,l and the
intermediate design simulated with Sh,h.

Surprisingly, tests based on EBE often lead to an
increased type I error, especially for the sparse design. For
AUC, the global type I error remains at the nominal level for
the rich design (N=40, n=10). For Cmax, the global type I
error lies within the 95% PI for the rich and the original
designs simulated with Sl,l. The global type I error increases
when the number of samples per subject decreases and is
lower for Sh,l compared to Sl,l and Sh,h. Most of the global
type I errors are below 10% for Sl,l and Sh,l. For AUC and the
intermediate design, the global type I error is 8.0%, 7.1% and
22.2% for Sl,l, Sh,l and Sh,h, respectively.

Fig. 5 represents the global type I errors of bioequi-
valence tests for the treatment effect on log(AUC) (top)
and log(Cmax) (bottom) obtained from NLMEM versus the
median shrinkage on the corresponding parameter for the
reference treatment. The distribution of the shrinkage is
similar for both treatment groups (Ref and Test) and both
unilateral hypotheses (results not shown). For both param-
eters, the median shrinkage is lower for Sh,l than for Sl,l.
For log(AUC), the median shrinkage is also higher for Sh,h
than for Sh,l. There is a clear relationship between the
inflation of the global type I error and the amount of
shrinkage with type I error greater than 15% and
shrinkage greater than 20%.
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DISCUSSION

In this study, we compare the standard bioequivalence
analysis performed on individual estimates of AUC and Cmax

obtained by NCA to the same bioequivalence analysis
performed on individual EBE obtained by NLMEM. To do
so, we perform a simulation study with different designs and

different levels of variability. The estimation of parameters
and the type I error are evaluated for both types of estimates.

Compared with the simulation study of Panhard and
Mentré (14), we use the bioequivalence analysis recommen-
ded in the guidelines (1,2) and we study both parameters
(AUC and Cmax). Furthermore, the simulation study of
Panhard and Mentré is performed using the FOCE
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Fig. 3. Bias (top) and root mean square error (RMSE, bottom) of estimates of the sample mean for log
(AUC) (left) and log(Cmax) (right) for the reference treatment from 1000 trials for different designs (N:
number of subjects, n: number of samples per subject) and different variability settings Sl,l (○), Sh,l (□) and
Sh,h (∆). White symbols represent the individual estimates obtained from NCA; grey symbols represent the
individual estimates obtained from EBE.
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Fig. 4. Global type I error of the bioequivalence tests performed on
the treatment effect of log(AUC) (top) and log(Cmax) (bottom). The
global type I error is estimated from 1000 bioequivalence trials
simulated under H0;80% and H0;125% for different designs (N: number
of subjects, n: number of samples per subject) and different variability
settings Sl,l (○), Sh,l (□) and Sh,h (∆). White symbols represent the
individual estimates obtained from NCA; grey symbols represent the
individual estimates obtained from EBE. The dashed lines represent
the nominal level at 5% and its 95% prediction interval ([3.7%;
6.4%]).
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Fig. 5. Global Type I error of the bioequivalence tests performed on
the treatment effect of log(AUC) (top) and log(Cmax) (bottom) versus
the median shrinkage on the parameter of interest for the reference
treatment and different simulation settings Sl,l (○), Sh,l (□) and Sh,h
(∆). The rich design (N=40, n=10) is represented by white symbols, the
original design (N=12, n=10) by light grey symbols, the intermediate
design (N=24, n=5) by dark grey symbols, and the sparse design (N=40,
n=3) by black symbols. The dashed lines represent the nominal level at
5% and its 95% prediction interval ([3.7%; 6.4%]).

Table II. Type I Error of the Bioequivalence Tests Performed on the Treatment Effect of log(AUC) and log(Cmax) for Each Unilateral
Hypothesis, H0;80% and H0;125%

N=40, n=10 N=12, n=10 N=24, n=5 N=40, n=3

SIM NCA EBE SIM NCA EBE SIM NCA EBE SIM NCA EBE

Sl,l AUC H0;80% 3.9 4.0 5.5 5.4 5.2 7.7 4.3 4.3 8.0 3.9 5.9 14.8
H0;125% 4.6 5.1 5.8 5.4 5.2 7.4 4.4 3.8 7.5 4.6 5.1 16.2

Cmax H0;80% 4.5 6.6 10.0 5.7 5.1 9.0 5.8 5.3 14.6 4.5 6.8 30.6
H0;125% 4.9 6.3 9.1 5.2 5.6 10.9 5.3 5.2 16.2 4.9 5.5 29.1

Sh,l AUC H0;80% 3.9 5.4 4.7 5.4 4.4 6.8 4.3 5.2 7.1 3.9 4.5 8.5
H0;125% 4.6 6.1 5.2 5.4 4.7 6.1 4.4 3.9 5.8 4.6 5.1 11.5

Cmax H0;80% 4.5 5.1 4.0 5.3 5.3 5.3 5.5 6.0 6.5 4.5 7.2 9.2
H0;125% 5.0 5.4 5.0 5.2 5.1 5.8 5.7 6.1 7.1 5.0 6.2 7.8

Sh,h AUC H0;80% 4.3 0.8 20.6
H0;125% 4.4 0.4 22.2

Cmax H0;80% 5.5 7.0 13.8
H0;125% 5.7 9.3 17.0

The Type I Error is Estimated From 1000 Bioequivalence Trials Simulated Under H0;80% or H0;125% for Different Designs (N: number of
subjects, n: number of samples per subject), Different Variability Settings Sl,l, Sh,l and Sh,h, for the True Simulated Values (SIM) and Both Types
of Estimates (NCA and EBE). Due to the 1000 Replicates, the 95% PI for a Type I Error of 5% is [3.7%; 6.4%]
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algorithm implemented in R function nlme. The FOCE
algorithm is widely used to perform population PK analyses,
but, in simulation studies which compared different algorithms
available, stochastic EM algorithms (like the SAEM algorithm)
obtained the best results for accuracy and precision of estimates
(34,35).

As Panhard and Mentré did, we simulate under both null
hypotheses assuming a modification in the bioavailability F, i.e.
assuming the same modification for CL/F and V/F which also
similarly affects both tested parameters, AUC and Cmax.
Consequently, the number of simulations is reduced because
the unilateral hypothesisH0;80% (H0;125% respectively) forAUC
corresponds to the unilateral hypothesis H0;80% (H0;125%

respectively) for Cmax; the same set of simulations is used for
both parameters. However, other choices may be suitable as
any PK parameter is likely to change between two formulations
of the same drug. For instance, a change in the elimination rate
CL/V due to interaction with excipient could be possible (36).
Furthermore, we study only a one-compartment model. We do
not simulate multi-compartmental models. For both types of
estimates (NCA and EBE), we perform bioequivalence test
on AUC and Cmax. Even with a multi-compartmental model,
PK parameters would be summarized with these two
endpoints, even though the relationship between Cmax and
the PK parameters could be more complicated than for a
one-compartment model. As shown in Fig. 5, the increase of
the type I error of bioequivalence test based on EBE is
linked to the shrinkage which already appears with one-
compartment model. We think this relationship should be
similar for multi-compartmental models where more shrink-
age is expected.

In contrast to the bias for estimates based on EBE, the
bias for estimates based on NCA depends on the number of
samples per subject and is large for sparse design (N=40,
n=3) with high variability. Usually, NCA is used with rich
designs where there are about ten to twenty samples per
subject. This method is not well-suited for trials performed in
patients where the number of samples is often limited. In
comparison to model-based approaches, the estimation of
parameters through NCA has several drawbacks. It gives
equal weight to all concentrations without taking into account
the measurement error. Furthermore, NCA is sensitive to
missing data, especially for the determination of Cmax and the
computation of the terminal slope. Even without missing
data, the interpolation of the AUC between the last sampling
time and infinity is very sensitive to the number of samples
used to compute the terminal slope and could be problematic
for atypical concentration profiles. This latter issue is
perfectly illustrated by the simulation settings under Sh,h
where 88% of the missing dAUCi are due to the two last
concentrations increasing instead of decreasing. Contrary to
NCA estimates, there is no missing dAUCi estimated by
NLMEM due to this kind of PK profiles because all subjects
are analyzed together and information given by classical PK
profiles offset information given by particular ones. NCA
does not take into account all the knowledge accumulated on
the PK of the studied drug as each new analysis by NCA
erases the past contrary to NLMEM. Finally, although we do
not simulate such data, NCA applied to nonlinear pharma-
cokinetics provides meaningless parameters and cannot
handle data below the limit of quantification. In this study,

we choose to not introduce LOQ in the simulation because
we do not want to favour the SAEM algorithm which can fit
such data. We are aware that fixing some concentrations to
0.1mg/L could introduce some bias. To avoid such arbitrary
fixing, another common procedure is to resample until a valid
value is obtained; however, resampling can also introduce a
bias. Still, the proportion of fixing value remains very low for
Sl,l and Sh,l. It is more important for Sh,h but is responsible for
only 12% of the missing dAUCi estimated by NCA.

When the number of samples per subject is large and the
variability is not too high, tests based on individual NCA
estimates remain a good approach, since they are simple and
showed satisfactory properties for both tested parameters.
For Cmax and the sparse design, we expected an increase of
the type I error because there is no sampling time corre-
sponding to the maximal concentration, which is close to 2h.
But even with poor sample mean estimates, the type I error is
maintained at the nominal level of 5%. Though, for
simulation with Sh,h, the type I error of AUC is very
conservative (0.8%), which shows the limits of NCA for data
with high residual error.

Tests based on individual EBE have higher type I error
than tests based on NCA estimates. Our results on the type I
error for Sl,l are consistent with the results obtained by
Panhard and Mentré with the same variability setting. For the
sparse design, the type I error of tests based on EBE is
surprisingly high. In that case, EBE shrink towards their
mean value and are more similar in both treatment groups.
Therefore, the discrimination of the AUC or Cmax between
both treatment groups is more difficult, which leads to an
increase of the type I error (bioequivalence is obtained more
easily). These results are consistent with the results of the
simulation study performed by Bertrand et al. (37). In that
work, they evaluate by simulation the analysis of variance
(ANOVA) performed on individual EBE to test the influence
of a single nucleotide polymorphism on a pharmacokinetic
parameter of a drug. They show the impact of the shrinkage
on the power of ANOVA. The power is reduced when the
shrinkage increases. In other words, it is more difficult to
discriminate between the genotypes with high shrinkage even
when data are simulated with a difference.

As discussed by Schuirmann (26), the TOST procedure
can be very conservative for highly variable drugs. Con-
sequently, several improvements of this procedure have
been proposed as in Berger et al. (30), Brown et al. (38)
or Cao et al. (39), to mention only a few. We are aware that
there is still a great disagreement on which bioequivalence
test should be performed. However, we study only the
classical TOST in this paper because our main objective is to
compare the same standard bioequivalence analysis recom-
mended in the guidelines (1,2) and performed on individual
estimates obtained by two estimation methods (NCA and
EBE). Nevertheless, in this simulation study, the type I
error of bioequivalence test performed on the true individ-
ual simulated values is always at the nominal level of 5%,
even for Sh,h, where the variability is particularly high.
Therefore, we can conclude that, in this study, there is no
issue about the TOST procedure. Consequently, liberal or
conservative type I errors of bioequivalence tests performed
on estimates cannot be imputed to the TOST but rather to
the individual parameters estimation.
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Tests based on individual estimates, NCA estimates or
EBE, cannot be used for data with high residual error or
when the number of samples per subject is small. In those
cases, the type I error for tests based on NCA estimates is
very poor, or NCA estimates are biased, and the shrinkage of
EBE induces an increase of the type I error. In these
situations, other tests based on a global analysis of all data
should be considered. Panhard et al. already developed a
global bioequivalence Wald test based on NLMEM (14,25).
This test is directly performed on the treatment effect
parameter after fitting together the data of both treatment
groups with the estimation of within-subject variability. In this
study, they also used the FOCE algorithm implemented in
nlme. Recently, Panhard and Samson developed an extension of
the SAEM algorithm for NLMEM including the estimation of the
within-subject variability (40). However, the likelihood ratio test
for bioequivalence has not been developed, due to the composite
null hypothesis. Additional methodological developments and
simulations are needed to study bioequivalence tests after global
analysis of all PK data. This will be especially useful for drugs
with nonlinear pharmacokinetics and conditions where rich
sampling is difficult to achieve, i.e. in pediatric studies or for
drugs which cannot be administered in healthy subjects for safety
reasons, such as oncology drugs.
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APPENDIX

Approximation of the Variance of log(Cmax) by the Delta
Method

For a one-compartment model with first-order absorption
and first-order elimination, Cmax is defined in Eq. 6 as a function
of the three PKparameters: ka,CL/F andV/F. The variance of log
(Cmax),w2

Cmax
, is approximated by the deltamethod (33) as follows:

w2
Cmax

� @ log Cmaxð Þ
@ log kað Þ

� �2

log �ð Þ
w2
ka þ

@ log Cmaxð Þ
@ log CL=Fð Þ

� �2

log �ð Þ
w2
CL=F

þ @ log Cmaxð Þ
@ log V=Fð Þ

� �2

log �ð Þ
w2
V=F

ð13Þ

where log(μ)=(log(μka), log(μCL/F), log(μV/F))′. After computing
the derivatives, w2

Cmax
can be approximated by the following:

w2
Cmax

� Δ2 w2
ka
þ w2

CL=F

� �
þ Δ� 1ð Þ2w2

V=F

with Δ ¼
�CL=F �CL=F � �ka �V=F

� �þ �ka �CL=F�V=F log
�ka�V=F

�CL=F

� �
�ka�V=F � �CL=F

� �2
ð14Þ

In this simulation study, the general formula above is
applied to approximate the variance of log(Cmax) for both
treatment groups (Ref and Test). Given the treatment effect

we simulate for the treatment Test, both approximations,
w2
C Refð Þ

max
and w2

C Testð Þ
max

, are equal.

To approximate the variance of log(Cmax) by the delta
method, we use the true simulated values of μ(Ref) and Ω(Ref)

described in “Estimation Based on Nonlinear Mixed Effects
Model.” To evaluate the delta method, we also estimate the
variance of log(Cmax), using the simulated parameter values
of the rich design (N=40, n=10) for the reference treatment,

under Sl,l and Sh,l . For both variability settings, w2
C Refð Þ

max is
estimated as the empirical variance of the 40000 true
simulated values of log C Refð Þ

max i

� �
. For Sl,l , the standard

deviation of log(Cmax) for the reference treatment expressed
in percent is 10.5% both by simulation and the delta method.
For Sh,l , it is 46.3% and 46.7% by simulation and the delta
method, respectively.

These results on the true simulated values validate the
approximation of the variance of log(Cmax) by the delta
method. Consequently, we apply it to the data of each
treatment group for each simulated trial of the simulation
study to approximate bw2

C Refð Þ
max

(bw2
C Testð Þ

max
respectively) using b� Refð Þ

(b� Testð Þ respectively) and bΩ Refð Þ (bΩ Testð Þ respectively).
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